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We report large-eddy simulation (LES) of turbulent channel flow. This LES neither
resolves nor partially resolves the near-wall region. Instead, we develop a special
near-wall subgrid-scale (SGS) model based on wall-parallel filtering and wall-normal
averaging of the streamwise momentum equation, with an assumption of local inner
scaling used to reduce the unsteady term. This gives an ordinary differential equation
(ODE) for the wall shear stress at every wall location that is coupled with the
LES. An extended form of the stretched-vortex SGS model, which incorporates the
production of near-wall Reynolds shear stress due to the winding of streamwise
momentum by near-wall attached SGS vortices, then provides a log relation for the
streamwise velocity at the top boundary of the near-wall averaged domain. This
allows calculation of an instantaneous slip velocity that is then used as a ‘virtual-wall’
boundary condition for the LES. A Karman-like constant is calculated dynamically
as part of the LES. With this closure we perform LES of turbulent channel flow for
Reynolds numbers Re, based on the friction velocity u#, and the channel half-width &
in the range 2 x 103 to 2 x 107. Results, including SGS-extended longitudinal spectra,
compare favourably with the direct numerical simulation (DNS) data of Hoyas &
Jiménez (2006) at Re, =2003 and maintain an O(1) grid dependence on Re,.

1. Introduction

Large-eddy simulation (LES), the numerical simulation of fluid flow in which
large-scale motion (‘large eddy’) is computed directly while small-scale motion is
modelled, shows considerable potential for the under-resolved but accurate simulation
of complex turbulent flows. To date, an LES practitioner wishing to simulate a
turbulent flow effectively assumes that the dynamics of large-scale, resolved eddies are
dominated by the flow geometry along with associated large-scale boundary conditions
or other turbulence-generating forcing. Accordingly, it is then thought sufficient to
simulate numerically only those large eddies yet retain the capability to accurately
recover at least first- and second-order statistics (means, correlations and power
spectral densities). The underlying ansatz is that the small scales are universal and can
be parameterized in some way by the local resolved flow properties, with no explicit
dependence on boundary conditions. If these assumptions are valid, successful LES
should require only a computational grid that scales with flow geometry; specifically,
the computational grid should be independent, O(1) or weakly dependent, O(log Re),
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say, on the Reynolds number Re. LES promises enormous resource savings when
compared to the prohibitively expensive but accurate direct numerical simulation
(DNS), where all scales of motion are computed. Typically, the required number of
grid points for DNS scales as O(Re”*), which measures the size of the largest eddy
relative to the smallest eddy in three dimensions. Further, the need to compute all
scales and then to perform massive data reduction renders DNS an inefficient and
unpractical engineering design tool.

Since the early work on LES by Smagorinsky (1963) and Deardorff (1970), LES
has met with a mix of success and challenges. It is fair to say that the outcome of
an LES depends largely on the validity of the assumptions held by our hypothetical
LES practitioner. For flows in which these assumptions apply, typically unbounded
flows, such as homogeneous isotropic turbulence (e.g. Misra & Pullin 1997), shear and
wake/jet turbulence and even the more challenging Richtmyer—Meshkov instability
(e.g. Hill, Pantano & Pullin 2006), LES has performed exceedingly well. Despite
continuing efforts, however, (e.g. Cabot & Moin 1999; Piomelli & Balaras 2002;
Wang & Moin 2002; Templeton, Medic & Kalitzin 2005; Piomelli 2008), the LES of
wall-bounded flows, while improving, remains a challenging area of research.

Near walls, ‘large eddies’, implicitly defined by the coarse grid, simply do not exist
(Pope 2004). The near-wall eddies, having sizes constrained by the wall, become
under-resolved at high Re and are therefore considered part of the subgrid motion.
In unbounded flows, the large eddies, carrying most of the turbulent kinetic energy,
set the length and time scales that describe the rest of the small-scale turbulence. This
picture is reversed near the wall, where the most energetically productive eddies are
necessarily part of the small-scale motion. Further, both these descriptions are present
in wall-bounded flows, and both contribute significantly to the overall turbulent flow
field. This was demonstrated by Hutchins & Marusic (2007), who plotted velocity
spectra of high-Re boundary layers at various wall distances and showed the existence
of two distinct energetic peaks: one that scales with viscous units, another that scales
with boundary layer thickness. A related complication is that, given sufficiently
high Re, even the mean velocity gradient is too steep to be resolved on the coarse
LES grid, appearing as a numerical discontinuity. The jump conditions across this
discontinuity depend on unclosed turbulent stresses, which themselves require reliable
models.

One can always perform a partially resolved LES, where the near-wall grid is refined
to resolve the near-wall eddies (e.g. Voelkl, Pullin & Chan 2000). Although this kind of
simulation has its role in the development of LES models, its resolution requirement,
which scales as O(Re'®) (Piomelli 2008), is almost as restrictive as DNS. But if we
require that the resolution requirements of LES be at most weakly dependent on Re,
we are forced to explicitly model the vigorous near-wall fluctuations and the numerical
discontinuity (slip) in the mean velocity profile. Ample experimental evidence that
suggests some degree of universality in wall-bounded flows, e.g.the empirical log law
of the wall, offers hope that a viable LES wall model could be found.

Past modelling efforts were focused on fitting a log law to the near-wall filtered
velocity to obtain the implied wall shear stress, which, in turn, is used as a wall
stress boundary condition (Cabot & Moin 1999; Pantano et al. 2008). Instead of the
log law, the thin boundary layer equations (TBLEs) coupled with a damped mixing-
length eddy viscosity can also be used, giving good agreement with experiments
even in separating flows (Cabot & Moin 1999; Wang & Moin 2002). Yet another
method of determining the wall stress is by matching the LES eddy viscosity with the
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Reynolds-averaged Navier—Stokes (RANS) eddy viscosity (Templeton et al. 2005),
with success at high Re.

In this paper we apply the wall stress boundary condition in reverse: given the
wall shear stress, we impose the corresponding slip velocity at a predetermined lifted
virtual boundary, located well above the viscous layer and fixed in outer coordinates.
We approach the wall modelling problem by considering the physics of near-wall
vortices, giving us a relationship between the wall shear stress and slip velocity.
We assume that the dynamics of each wall-adjacent cell are partially determined by
its wall shear stress, similar to the class of equilibrium-stress models (see Piomelli
2008), but, presently, the wall shear stress is governed by its own ordinary differential
equation (ODE) derived from assumptions somewhat like those used to derive the
TBLE. We do not, however, use an inner mesh to solve the TBLE, called a zonal
approach by Piomelli & Balaras (2002); instead, we assume only that the law of the
wall, irrespective of its detailed form, holds locally. This is then used only for the
treatment of one term in our reduction of the streamwise momentum equation. Indeed,
our approach attempts to essentially eliminate the Reynolds number dependence of
the wall model. In terms of the classification of Piomelli (2008), we have combined
elements of both the equilibrium-stress models and the zonal approaches, since we
assume a localized near-wall layer characterized by its wall shear stress, and we also
solve a reduced form of the TBLE.

Much understanding of wall turbulence has been gained by studying simple physical
models based on a statistical ensemble of vortical structures that have tractable
analytical expressions. The attached eddy model of Townsend (1976; see also Perry &
Chong 1982; Nickels et al. 2007) was able to reproduce various observed physics of
wall turbulence, e.g.the mean velocity profile, the Reynolds stress profiles and some
aspects of the velocity spectra. A part of our wall model is based on related ideas,
where we assume a hierarchy of vortices with sizes that scale with wall distance. These
are aligned in the streamwise direction and act to wrap the streamwise momentum,
that is the vortex axial velocity, as if it behaved locally like a passive scalar.

In what follows, the filtered Navier—Stokes equations are given in §2.1, and the
basics of the stretched-vortex subgrid-scale (SGS) model (Misra & Pullin 1997) are
described in §2.2. This is followed by the development of an extended SGS model
that incorporates the effect of vortex winding of axial velocity to produce off-diagonal
components of the vortex-frame subgrid Reynolds stresses (§2.3). We then introduce
the ideas of wall-normal averaging (§ 3.1) and local inner scaling (§ 3.2), which together
lead to an ODE for the wall-normal streamwise velocity gradient at each wall-adjacent
cell without the need to resolve the wall layer. The SGS dynamics in the wall-adjacent
cell are split into three layers (§3.3): a viscous dominated region, a constant-stress
region and an outer region. The extended SGS model, applied within the constant-
stress layer with streamwise-aligned SGS vortices, leads to a log relationship for the
streamwise velocity. A factor, equivalent to an inverse Karman-like constant, that
multiplies the log term is calculated dynamically by the LES to within a mixing
constant. The latter is determined a priori by a stress-matching argument. Together
with the use of an empirically determined matching point, in inner variables, for the
logarithmic and viscous sublayer velocity intersection, the overall SGS wall model
provides a slip boundary condition for the streamwise velocity at a lifted ‘virtual’
wall (§3.4) that is placed within the log layer. Statistical estimates of the Karman
‘constant’ can then be obtained from the LES. The results obtained from LES of
channel flow are described in detail in §4, and details of the numerical method are in
Appendix A.
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2. Equations of motion and SGS model
2.1. Filtered Navier—Stokes equations

In this paper, the following notation is adopted: x; or x is the streamwise coordinate;
x; or y is the spanwise coordinate; and x; or z is the wall-normal coordinate. We
obtain the governing equations for LES by applying a filter to the Navier—Stokes
equations. Presently this filtering operation is considered strictly formal; no explicit
filtering is used in the present work. We shall denote with a tilde any field quantity
¢(x) subjected to the filter G with cutoff length A, that is

F(x) = / Glx — x'; A)p(x') dx. 2.1)

Except for A., which is prescribed through the SGS model, no other filter properties
enter into the flow simulation. After applying the filter and explicitly decomposing
the velocity field as u; =u; + u;, we obtain the filtered Navier—Stokes equations

35,’ 8fl;t/,'fl:l/j Bﬁ 8214, BT;I 8ﬂl
= — t 81 . =0, 22
ar " ox o o o, T Do 5 22)
ﬂ]—uu]—uu,—ﬁ+uu]+uu. (2.3)

In the above equation T;; is the subgrid stress tensor. We have neglected the Leonard
stresses, since a numerical method with high spectral resolution is used, allowing us
to focus on LES modelling; v is the kinematic viscosity; p is the kinematic pressure;
and f(¢) is a force that maintains a given mass flux through the channel. Temporal
filtering is implicit in LES, since the time step size is chosen by the Courant—
Friedrichs—Levy (CFL) condition, which is based on the advection time scale of
spatially resolved scales. In other words, spatially unresolved scales are also temporally
unresolved.

2.2. The stretched-vortex SGS model

The stretched-spiral vortex (Lundgren 1982) is a physical model for turbulent fine
scales, where the flow is composed of tube-like structures with concentrated vorticity.
On a segment of such tubes, the flow is approximated by an axially stretched two-
dimensional flow. These simplified equations admit analytical large-time asymptotic
solutions, from which ensemble statistics, such as correlation and spectra, follow.
These have been studied extensively and were found to be consistent with experimental
data (see e.g. Pullin & Saffman 1993; Pullin & Lundgren 2001; O’Gorman & Pullin
2003).

Misra & Pullin (1997) used a stretched vortex to model subgrid scales for LES in
the following way: Embedded in each computational cell it is assumed that there
exists a superposition of stretched vortices, each having orientation taken from a
probability density function (p.d.f.). If we further assume that the subgrid ensemble
dynamics are dominated by a vortex aligned with the unit vector e', modelled via a
delta-function p.d.f., the resulting subgrid stress tensor of the ensemble is (Misra &
Pullin 1997)

where K is the subgrid kinetic energy,

K = /k " B dr., (2.5)

¢
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where presently, we use the cutoff wavenumber k. =1/A., A.=(A, A, A,)"?, and

E(k) is the SGS energy spectrum.

The above expression is essentially kinematical and is independent of the detailed
subgrid vortex dynamics. If it is further assumed that the SGS vortices are of the
stretched-spiral type, which have energy spectra, determined by detailed Navier—Stokes
dynamics, of the form (Lundgren 1982)

E(k) = A oe* Pk exp[—2k*v/(3]al)], (2.6)

where E=e}’e}?§ij, the stretching felt along the subgrid vortex axis imposed by the

resolved scales, and §U =(1/2)(du;/dx; 4+ 0u;/dx;), the resolved strain-rate tensor;
then combining (2.5) and (2.6), we obtain

K = %%g r-1/3,«7], (2.7)

where
Hoy=H PR,y =@v/3la), ke = ko (2.8)

In the above expressions I" is an incomplete gamma function, and k> can be
interpreted as the inverse grid-level Re: the LES model is most active when x. — 0
and turns off for . — co.

Except for the choice of e”, we obtain a parameter-free SGS model by calculating
the grouped constant 7, from the following matching procedure (Voelkl et al. 2000):
Calculate the local average, denoted by ( ), of the resolved-scale second-order structure
function from the running LES simulation, and match it to the stretched-spiral vortex
prediction of the same grouped constant,

ke

where F, is the local second-order structure function as calculated from the running
simulation,

= [6u;:)* = [u;(x) —uw;(x)])?, r>=(]dx])* —(dx-e’)?, dx=x—x". (2.10)

Here, x’ is the integration variable; Jy is the zeroth-order Bessel function of the
first kind; and r is the distance from x’ to the vortex axis. Substituting the energy
spectrum, (2.6), and simplifying, we find that

Ao = (F2)/(Q(ke, d)), (2.11)
where
d=r/Ac; Qlke,d)=4 / B 1 = Jol(k /i) md)] di (2.12)
0

Computationally efficient asymptotic approximations for Q(«., d) as k. — 0, similar
to Voelkl et al. (2000), are presently used.
We now choose the averaging operator to be the ensemble average,

Z b, (2.13)

xE/l

where ¢ is either F> or Q; A(x) is the set of all points near x; and N is the
number of points in A"(x). Presently .4°(x) consists of points within the closed
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(2A;) X (2Ay) X (2A;) block centred on x, that is

M) ={x"x Fx x =X <ALy =Y <Ay 2= <A (2.14)

correspondingly, N =33 — 1 =26.

2.3. Extended stretched-vortex SGS model

The original stretched-vortex SGS model consists of an ensemble of local two-
dimensional two-component flows. That is only planar motions of planar velocities of
these local flows are considered when calculating ensemble statistics. The stretched-
vortex SGS model used by Misra & Pullin (1997) and Voelkl et al. (2000) is largely
based on this construction. Pullin & Lundgren (2001) found that planar motions (no
axial coordinate dependence) inside cylindrical vortices convecting both passive scalars
and the axial velocity could also be analysed within the same stretched-spiral vortex
framework. An asymptotic two-dimensional three-component flow solution exists for
which the evolution of the axial velocity and of a passive scalar follows essentially
the same mapped evolution equations (Pullin & Lundgren 2001; O’Gorman & Pullin
2003). Using a simplified version of analysis, Pullin (2000) developed a vortex-based,
SGS scalar flux model (see also Hill et al. 2006).

These ideas motivate the present extension to the stretched-vortex SGS stress model
(Misra & Pullin 1997) by incorporating the added effects of axial velocity transport
modelled as a passive scalar. Recapitulating the result for subgrid scalar flux (Pullin
2000),

—~— ac . —~—
VT = —Ksai if =12 =0, (2.15)
Vi

where K, =y A.K'/?/2. Here, v; is the vortex-frame velocity and y; is the vortex-frame
spatial coordinate (y; coincides with the vortex axis); ¢ is the resolved passive scalar;
v} is the vortex-frame subgrid velocity; and y is an O(1) universal dimensionless
constant, estimated by Pullin (2000) to be equal to unity. Equation (2.15) says that the
turbulent fluctuations of a subgrid spiral vortex of size A, and energy K transports
the passive scalar in a way that results in a net flux of resolved passive scalar against
its gradient.
Assuming analogous axial velocity transport dynamics (¢ =7;), we write the
analogue of (2.15),
02’173 = —Ks 8U3
dyi

if =12 viv3=0. (2.16)

We shall later allow for a different value of y appropriate to axial velocity transport
(see §3.5). Rotating back to the laboratory frame using the identities

8i3v3 = 8i3(8;30;) = ¢/ (eju;), (2.17a)
(81181 + 8:282)0/9y; = (8;j — 8138;3)0/dy; = (8i; — e'e})d/0x;, (2.17b)
we arrive at the tensor form
— 7

M;fl:l/j = _KX ejekTM(ali — e;)elp) . (218)

We add this, and its transpose (since the subgrid stress tensor is symmetric), to the
existing terms, (2.4), to obtain the extended subgrid stress model:
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Tij = uu'; +uu,+uAuJ

L Ol
=K(8,-j—e;’e;f)—l(s eeka (5,,—el V) +el ek8 (8lj—e, ) (2.19)

Note that the form is invariant under axis rotations and to sign reversals of e'. In
other words, the subgrid stresses are understood to be produced by pairs of counter-
rotating SGS vortices. Also, the new terms are traceless so that the SGS kinetic energy
remains unchanged (7;; = 2K).

We will later use (2.19) in the development of a special SGS wall model while
retaining the standard stretched-vortex model, with SGS vortex aligned with the most
extensive eigenvector of the resolved strain-rate tensor, that is e’ = ez, within the main
body of the flow.

3. Near-wall SGS model: boundary treatment

We now describe in detail the development of our wall-adjacent SGS model.
This recognizes explicitly the highly anisotropic character of near-wall turbulence.
The main idea is to integrate across the near-wall layer in a way that models the
appropriate physics while providing a slip boundary condition at a raised virtual wall
for the resolved-scale LES.

3.1. Near-wall filtering

A novel feature of our boundary treatment is an ODE governing the local wall shear
stress that, when coupled with the LES, eliminates the need to resolve the near-wall
region. In this section, we shall, without loss of generality, fix the location of the wall
at z=0. We first define an xy-plane filter:

S, v.z.1) = // Sy 2 )G — X A)G( — y:ANdYdy.  (3.)

We require the filter width A, to be much larger than the viscous wall unit /™, where
[T =v/u,. We apply this filter to the streamwise momentum equation to obtain

ou  Oduu  duv  duw ap 0’u

o Tax T Ay + dz 8x+v822’ (32)
where we have neglected lateral diffusion, which is justifiably small, given the relative
size of the filter width. The planar filtering is purely formal; we do not perform
such filtering or indeed any explicit filtering in the present approach. In terms of
inner variables, A>T, where [T =(v/n)"/? is the viscous, near-wall length scale
and the wall velocity gradient no is defined below. In outer variables Ay <8, and
we therefore consider G in (3.1) as a delta function for the purposes of LES. The
nonlinear terms include both resolved and subgrid contributions, uw;u; =uu; + T;;,
and, for notational convenience, we have bundled the fluctuating pressure gradient
with the mean pressure gradient, renaming —3p/dx + f(¢) as —dp/dx.

We next define a second, top-hat filter, which is an average in a wall-adjacent layer

of arbitrary thickness #,

h

@iy = g [ oz (3)

Applying this to (3.2) along with the no-slip condition, u(x, y, 0, #) =0, and assuming
that the streamwise pressure gradient is constant throughout this wall-adjacent layer,
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we obtain
{u)  9{uu)  {uv) 1 op v [ du
=—— - —= - =] = , 34
ar T ax T oy p T | Ta Bz, T 34
where the local wall streamwise velocity gradient is
ou
Ny = | (3.5)
Zlo

The local wall shear stress is to(x, ¥, t) =vno(x, y, 1) =u?(x, y, t), where u,(x, y, t) is
the local wall-friction velocity. Since A ;> I*, each computational cell is effectively
assumed to behave as a local statistically homogeneous unit of wall turbulence, similar
to the so-called minimal flow unit of Jiménez & Moin (1991). Experiments conducted
by Nakayama, Noda & Maeda (2004) suggest A , > 18007%.

3.2. Local inner scaling

We now introduce a local inner-scaling ansatz. This states that the statistics of each cell
are characterized by their respective local inner scales v and ng(x, y, t) or equivalently
[T and u.(x, y, t). Specifically, we assert that the SGS streamwise velocity, within a
near-wall, sugbrid region to be defined subsequently, can, for each cell, be collapsed
onto the form

u(x,y,z,t) = (nolx, y, 1)?F(z"), 2" =z(no(x,y,1)/v)"* = z/1", (3.6)

where F(zT) can be thought of as a local ‘law of the wall’. Next, differentiate (3.6)
with respect to ny to give

du 1 1/2 +
— = F F'], 3.7
ang = 2/m) [F+z7F] (3.7
where F' =dF/dz"; perform the wall-adjacent average (3.3); and then back-substitute
the inner scaling (3.6), evaluated at z=h,

3 (u) 1 172 + ul,
N F(hty = 2n, 38
o = 5 0/m) F) = S (38)
where u|, = F(h") with h* =h/I". Finally, using the chain rule we find
Ou) _ 3u) dmo _ itly 9o (39)

ar  dny ot 2m dt

We emphasize that (3.9) is an exact consequence of (3.3) and (3.6). Moreover, using
(3.9) to evaluate the time derivative of the plane-filtered and vertically averaged
streamwise velocity, the explicit form of F(z") in 0 < z <h is not needed; this occurs
owing to the cancellation of two integrals. The velocity u|, will later be obtained
directly from the LES.

Now substitute (3.9) into the first term of (3.4) to obtain

Buim, o) o) L gy 9B v (0
» h\ 0z
Our motivation for performing the wall-adjacent average, (3.3), is to remove the steep

2no ot 0x dy  h uwl, ox
near-wall gradients, which we do not wish to resolve. In-plane (x, y) gradients of
filtered quantities in (3.10) are now approximated by values at z =h, supplied by the

_ no) . (3.10)
h
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FIGURE 1. Schematic showing the near-wall set-up: ho locates the lifted virtual wall, where
boundary conditions are applied; & locates the input plane to the wall shear stress equation,
(3.10); h, locates the outer edge of the viscous sublayer; e’ is the alignment of SGS vortices
in their respective regions.

LES,
duu) _ duul,  duv) _ duvl,
ax  ox dy  dy
This approximation captures some of the non-equilibrium effects arising from large-
scale in-plane inhomogeneities. With these assumptions, we rewrite (3.10) as

v [ du
h+h<8zh_n0)]' (312)

Equation (3.12) governs the evolution of the wall shear stress, written in terms of 7.
The right-hand side of (3.12) only involves known quantities at &, which is arbitrary.
In practice, we choose & to be at the first grid point within the LES (see figure 1),
and the quantities on the right-hand side can then be determined from resolved-scale
LES quantities. We remark that our use of local inner scaling, (3.6), is restricted
to the reduction of the unsteady term in (3.4) and that this operation does not
require a specific form for F(z"). The other terms in (3.12) will be provided from the
resolved-scale LES itself, so that (3.12) can then be viewed in this sense as resulting
from mixed inner—outer scaling. When coupled with an LES, (3.12) then allows us to
determine the wall shear stress without resolving the near-wall steep gradients, which
have been integrated out by the wall averaging. One can also interpret (3.12) as an
integrated form of the local unsteady turbulent boundary layer equations with the
added assumption of local inner scaling for the unsteady term. Further, (3.12) knows
nothing about the channel geometry and should, therefore, be applicable to general
flows. To close this coupling, appropriate boundary conditions for the LES need to
be applied, which is the subject of the next subsection.

(3.11)

oo _ 2mo | 1 — duul, duv|, dp
oo 2 ), — e B 2P

ot ul, | h ax dy dx

3.3. Multi-layer SGS wall model

We do not resolve the near-wall region. Instead, the LES computation takes place
above a certain fixed, Re-independent height A,, which will later be chosen as a small
fraction of the near-wall cell size. To proceed we first define three regions for the
lower half-channel. It is understood that, for the present simulations, similar regions
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exist on the upper wall. These regions are (see figure 1)

(1) 0 < z < hy, region (I), essentially the viscous sublayer;

(i1) h, <z < hy, region (II), viewed as an overlap layer, where the shear stress is
approximately constant and will be modelled by the extended stretched-vortex SGS
model consisting of attached vortices aligned with e, ; and

(iil) ho <z < 6, region (III), where non-universal outer flow features are computed

with LES coupled with the original stretched-vortex SGS model of detached subgrid
vortices aligned with es.
We remark that the combination of attached and detached vortices was also used
by Marusi¢c & Perry (1995) to model wall turbulence. The plane z=h lies at the top
of the first grid cell in region (III). The plane z =ho will be referred to as the lifted
virtual wall. We now proceed to model the flow in regions (I) and (II) in a way that
provides a slip velocity at z = hy.

In region (I) we use u™ =z", where ut=u/u,, z*=z/I7, and u, is known. In
particular, ut|, =h, where hj =h,/l". For a hydrodynamically smooth wall, where
the wall roughness is small compared to [*, experiments indicate that the outer edge
of the viscous sublayer is located at i ~ 11 (based on the intercept between the linear
and log components of the law of the wall). We will therefore take u*|,, =h} =11.
In fact, this intercept is found to be sensitive to pressure gradients and can assume
values in the range 10-15 (Nickels 2004). A cubic equation was successfully used in
the paper of Nickels (2004) to model this effect; we do not pursue this presently
in favour of simplicity, although this generalization should certainly be included for
separating flows. Above z* =h], inviscid outer flow dynamics become important.

3.4. Slip velocity at lifted virtual wall

We now model the mean-flow dynamics in region (II), &, <z < ho. We require hg to
scale with outer flow thickness § but to remain relatively small, iy < 0.1, say, so that
non-universal effects (the wake) uncharacteristic of the inner scales can be captured
by the LES in region (III). This will permit the LES to be performed with the same
grid for a wide range of Re, eliminating the O(Re!®) scaling requirement for the grid
resolution of a partially resolved wall-bounded LES (Piomelli 2008). Put another way,
ho remains fixed, O(§8), but h, becomes thinner, O(I"), with increasing Re.

Region (II) is, by construction, the so-called overlap region, or the production-
equals-dissipation layer, where the shear stress is approximately constant.
Furthermore, the shear stress is balanced by the wall shear stress (Townsend 1976).
Casting these ideas in LES terminology,

ul(x,y,t) = —uw = —uw — T,. = —T,., since w=0. (3.13)

The existence of quasi-streamwise vortical structures in wall turbulence have long
been observed by researchers (see e.g. Head & Bandyopadhyay 1981; Robinson 1991)
and have also served as useful physical models (see e.g. Townsend 1976; Perry &
Chong 1982; Marusi¢c & Perry 1995; Adrian 2007; Nickels et al. 2007). Motivated
by these studies, we model region (II) with an ensemble of vortices aligned in
the streamwise direction, (e}, e}, e?)=(1,0,0) < e'=e,. Substituting these into the
expression for the shear stress produced by the extended stretched-spiral vortex SGS
model, (2.19), and noting that the only non-zero component of the mean velocity
gradient tensor is du/dz, we obtain

1
sz = _EVHKI/zAc

da

ot (3.14)
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FIGURE 2. Schematic of a pair of attached counter-rotating vortices. The winding effect of the
vortices are shown on contour plots of the streamwise velocity along with the accompanying
profiles. Darker shades represent higher-momentum fluid. The various stages of mixing are
characterized by the times t =1y <t <t».

Recall the physical mechanism that produces this shear stress: the action of the
spiralling streamwise vortex is to wrap its own axial velocity, now identified as
the mean streamwise velocity, as if it were a passive scalar (see figure 2), thereby
transporting high-momentum fluid towards the wall and transporting low-momentum
fluid away from the wall. This process has the observed effect of a flattened streamwise
velocity profile.

Unlike the SGS vortices in region (III), which are unaware of the presence of
the wall and are, therefore, considered as detached from the wall, the size of these
near-wall vortices, A., are constrained by the presence of the wall so that A.=z. That
is (3.14) with A, — z can be interpreted as the shear stress produced by a hierarchy
of longitudinal vortices that scale with the wall distance. This scaling assumption is,
in fact, the idea of the so-called attached wall eddy (Nickels et al. 2007). We therefore
write (3.14) in the form

du 1 u,
— = 3.15
dz Az ( )
where the dimensionless local quantity given by
yuk'/?
A )= —"—"—"— 3.16
l(xaya ) 2(_sz/u1;) ( )

resembles the Karman constant «. An implicit assumption in the derivation of (3.15)
is that K is sensibly independent of z, even though A. decreases as the wall is
approached. This is possible if the number of these vortices (population density) also
increase in proportion to their decrease in size in order to maintain the same K.

Recall that K is also the SGS kinetic energy of the vortices lying in region (II)
and should be obtained from the structure-function-matching procedure local to the
vortex location. However, since, by construction, no grid points are placed within
region (II), we will use the grid points just inside the LES domain, centred on the
plane, z=h=ho+ A,, for this purpose.

In region (II), we now consider T,, as constant in (3.16) and model this as the
geometric average of its value at the true wall and at the top of region (II), so that

~T = e (- sz|e§)l/2. (3.17)
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Hence (3.16) becomes

yuk1/?

T

Equation (3.18), used in the limit x. — 0 for increased robustness (to avoid division
by small numbers), provides a way to calculate the local Karman constant. Solving
(3.15) in region (II), h, < z < hg, and evaluating the result at z = hy yields

~ _ U ho ~ _ 1 h() +
ulp, = 2 log (hv) +ulp, = ur<%1 log <hu> +hv>, (3.19)

where the constant of integration has been chosen by putting ul,, =u, h}". We will
use (3.19), which serves as a jump condition between the &,—ho planes, along with
v=0 and w =0, to set the Dirichlet boundary conditions at the lifted virtual wall &g;
u, is obtained from the solution of (3.12).

Equation (3.19) has been obtained from a physical model of region (II) in which
the dominant Reynolds shear stress is modelled by streamwise-aligned vortices that
transport low-momentum mean streamwise velocity away from the wall and high-
momentum mean streamwise velocity towards the wall. The idea that these self-similar
vortices scale only with z — independent of /T and § — implies an overlap argument.
Equation (3.19) couples ul,, with the resolved-scale LES in region (III), hg <z < 6,
which provides both K and e;. Equation (3.19) contains two constants, y and ;. The
latter is given empirically by A =11 from our discussion of region (I); a different
value could be used for rough-wall flows. This physical model provides a means of
dynamically calculating the instantaneous local ‘Karman constant’ #"; as part of the
LES. This will be demonstrated later.

A= (3.18)

3.5. Estimation of the mixing time constant yi

A constant, yyj, is required in (3.19). Owing to the highly anisotropic character of
near-wall turbulent physics, this is expected to be somewhat different in value from
that used in the SGS scalar application (Pullin 2000).

Consider the interface of regions (II) and (III), z=hy, where both inner and
outer layer modelling ideas are valid; in the spirit of LES filtering, we interpret
this interface as a blurred boundary between the two regions so that the change in
underlying vortical flow is gradual. This interface, z &~ hy < 0.14, is near the wall, so the
LES filtered flow field can be approximated by simple shear flow, du;/dx; =8;18;3S,
where S =du/dz. This implies that, in this region, egz(l/\/z 0, l/ﬁ); that is the
detached vortices are inclined at 45° to the wall.

We estimate yy; by matching Townsend’s structure parameter,

a; = T3/ T = Ti3/(2K), (3.20)

of the two vortical flow descriptions at this interface region. Given the vortex
alignment, this parameter measures the amount of shear stress that can be supported
relative to the vortex kinetic energy. First, the e5 alignment and (2.19) give

al‘eg = (_ K|e§/2)/(2K‘e§) =—1/4. (3.21)

Similarly, the e, alignment and (2.19) give

—1)2

arle, = (—yvu (K1) *A:8/2)/ (2K .)) = —yuAS(Kl,) /4. (3.22)
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To proceed, we assume high Re so that k. — 0. Also, for simplicity, d — 0. The subgrid
kinetic energy of the streamwise vortex then reduces to

Kle, = 2((3u;)?)/(m*(d?)). (3.23)

The local averaging is dominated by the background shear, so we can approximate
((8u;)*) ~ ((8u)?) ~(A.S)?, and for the same reason {d*) =(A./A.)>. Then

Ko, = 2(A.S/ T (324)
Using this, we obtain a; for the e, aligned vortex,
aile, = =27y (3.25)

Finally, matching these, a; le; =aile,, we have y;; = 2172 /1 ~0.45. This is the value used
presently for all LES.

3.6. Summary of SGS wall model

Our SGS model for the near-wall dynamics can be summarized as follows: for every
cell adjacent to both the top and bottom walls, (3.12) is solved for ny with terms
on the right-hand side provided by the LES at the top of the wall-adjacent cell
at z=h=A,+ hy. This provides ny(x, y,) and thus u.(x, y, ). Equation (3.19) is
then used to evaluate the streamwise slip velocity u|,(x, y,t) at z=hy, with 24"
evaluated from (3.18) and with K and sz|e§ evaluated at z=h= A, + ho from the
LES structure-function-matching procedure. The other boundary conditions at the
virtual wall are taken as v|,,(x, y, r) = w|n,(x, y, ) =0. This method couples the LES
with the modelled, near-wall dynamics. The LES has implicit knowledge of the
true no-slip boundary condition, because this was used in obtaining (3.12), and the
smooth-wall condition through use of 4} =11. Because the LES quantities in both
(3.12) and (3.18) are evaluated at the top of the first cell at z=h = A_ + ho, the height
of the virtual wall at z =h¢ should satisfy &, < hg < h. Presently we use ho=0.18 A,
independent of the LES resolution, and consider this as part of the overall grid. Some
tests to investigate sensitivity to sy were performed.

The governing equations are advanced using a third-order semi-implicit Runge-
Kutta method coupled with the Kleiser—-Schumann influence-matrix method for
enforcing the divergence-free constraint. The spatial discretization employs the
Fourier spectral method for the wall-parallel planes and a fourth-order accurate
finite difference on a uniformly spaced grid for the wall-normal direction. These are
detailed in Appendix A.

4. Results and discussion

The LES presently performed are summarized in table 1. Four sets were done and
are labelled A, B, C and D. All used the same form of the wall SGS model with
yin =0.45. For sets A and B, the original form of the stretched-vortex SGS model
was used in region (III). This corresponds to yi; =0 in (2.19). For set C, yi;; =0.45
was used in (2.19). There is no inconsistency with yy; # yi;1: the former is a necessary
part of the special SGS model in region (II), while the latter forms part of the
global SGS model for LES in region (III). Set F is used to evaluate the wall model’s
sensitivity to the virtual wall location hy. The simulations are run until the first- and
second-order statistics have converged. Data is then collected from one snapshot in
time; our interest is in low-order statistics, which do not benefit significantly from
time averaging.
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Case Re. Re, n(%) L./8 L,/8 ho/A, N, N, N, AT yvm A
Al 49 k 2k 1.1 32 8 0.18 192 48 48 3.3x10* 0 0.37
A2 610k 20k 22 32 0.18 192 48 48 33x10° 0 0.38
A3 7400k 200 k 29 32 0.18 192 48 48 3.3x10* 0 0.38
A4 87 M 2M 21 32 0.18 192 48 48 33x10° 0 0.37
AS 90M 20M 17 32 0.18 192 48 48 3.3x10° 0 0.37
B2 610k 20k 29 32 018 384 96 96 1.7x10° 0 0.38
B3 7400k 200 k 27 32 0.18 384 96 96 1.7x10* 0 0.38
B4 86 M 2M 22 32 0.18 384 96 96 1.7x10° 0 0.38

0.18 192 48 48 3.3x10° 045 039
0.18 192 48 48 3.3x10* 045 040
0.18 192 48 48 3.3x10° 045 039
036 192 48 48 3.3x10° 0 0.38
036 192 48 48 33x10* 0 0.38
036 192 48 48 33x10° 0 0.38

C2 580 k 20 k 3.6 32
C3 6900 k 200 k 1.0 32
C4 81 M 2M 04 32
F2 620 k 20k —0.8 32
F3 7600 k 200 k 0.6 32
F4 89 M 2M 0.8 32

CO OO CO OO0 OO OO0 OO CO OO0 CO OO OO OO

TaBLE 1. Simulation parameters and outputs: k=10, M=10°; Re.=u.8/v; u. is the mean
centreline velocity; Re; =u8/v; n=(Re;)qer/Re; —1;8 =L /2=8—ho=~8; A, =A,=4A;;
Re, is nominal; (Re; ), is actual; yy refers to y in (2.19) used in the interior of the LES
domain.
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FIGURE 3. Mean velocity profiles for LES with y;; =0 (set A): ¢, Re; =2k; O, Re, =20k; O,
Re, =200k; A, Re,=2M; V, Re, =20M; -—-—- , Re, =2k DNS (Hoyas & Jiménez 2006);
, log(zt/11)/0.37 + 11.

4.1. Profiles

The mean streamwise velocity profiles for Re, =2k-20M (set A) corresponding to
the original LES model (yi1 =0) coupled with the present wall model are shown in
figure 3, where (') denotes the xy-plane average at a particular time. Also shown is the
log relationship (3.19) with the predicted 4" averaged across all cases, (A#"1)uy =0.37.
Its intercept is 11 — log(11)/0.37=4.5 (compare with the classic value of ~5). The
slight drop in the mean-flow profile for the two points adjacent to the lifted virtual
wall was thought to be a manifestation of a spurious sublayer due to the Dirichlet
slip and no-transpiration boundary conditions (Cabot & Moin 1999). This issue is
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FIGURE 4. Turbulence statistics, (a) u},, (b) v, (¢) wi, and (d) —uw™, for LES with
yur=0 (set A): O, Re, =2k; O, Re, =20k; O, Re, =200k; A, Re,=2M; V, Re, =20M;
-———, Re, =2k DNS (Hoyas & Jiménez 2006); open symbols, total (resolved plus subgrid);

solid symbols, subgrid.

not specific to Dirichlet boundary conditions but can also be observed in wall stress
boundary conditions (see Pantano et al. 2008). The flow quickly recovers beyond the
two points and appears to follow the log profile.

We plot the corresponding profiles of the turbulent statistics in figure 4, where
( )rms refers to the root mean square (r.m.s.) of the fluctuations. The mild near-wall
oscillations may suggest that we used an inadequate time-averaging interval. However,
the localized nature of these oscillations and similar observations by Pantano et al.
(2008) offer the explanation that they are, in fact, Gibbs oscillations caused by the
singular no-penetration boundary condition.

Recently, the peak in near-wall u-fluctuations was observed to be mildly increasing
with Reynolds number (DeGraaff & Eaton 2000; Del Alamo et al. 2004). This peak,
located at z™ ~ 12, is beneath our lifted wall, z =ho, and well within our modelled
near-wall layer consisting of streamwise vortices — region (II). Accordingly, we do
not expect to capture this trend with statistics of the present simulations, which are
essentially an outer-layer — region (IIT) — LES. This is a limitation of the present wall
model.

The w-fluctuations are uniformly underpredicted; this is not surprising, since we
used the no-transpiration boundary condition, which does not strictly hold at the
lifted virtual wall. This amounts to letting the LES SGS model predict all near-wall
w-fluctuations, as confirmed by the subgrid component in figure 4(c). The overall
anisotropy in the Reynolds stresses, however, is preserved by our anisotropic LES
model, even close to the wall. Physically, we are letting the LES model do the work
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FIGURE 5. Mean velocity profiles for LES with y;=0.45 (set C): O, Re,=20k; O,
Re, =200k; A, Re,=2M; ----, Re,=2k DNS (Hoyas & Jiménez 2006); s
log(z*/11)/0.39 +11.

of modelling the near-wall ‘large eddies’, since these, constrained by the wall, become
part of the near-wall subgrid motion. This capability of the stretched-spiral vortex
SGS model is also clearly shown by Pantano et al. (2008).

Near the wall —uw ™ is slightly smaller than unity (see figure 4d), indicating a
small imbalance between —uw, as determined by the LES SGS model, and u2 =v7;,
as determined by the ODE for ny. To understand this, we set /9t =0 in the ODE
(3.12), solve for vy and then take the plane average to reveal that this imbalance
is caused by a non-vanishing plane average of duul,/dx and duvl|,/dy, as these are
numerically calculated in the skew-symmetric form. Similar trends in mean profiles
and turbulence statistics are observed (not shown) when the resolution is doubled in
all directions (set B).

The mean streamwise velocity profiles for Re, =20k-2M (set C) that are LES
performed with the extended form for 7;; given by (2.19) and yi; =0.45 slightly
underpredict the logarithmic relationship (see figure 5). The average of the predicted
Karman constant is 0.39. The corresponding turbulent statistics are shown in figure 6.
For these cases, the near-wall w-fluctuations are underpredicted (see figure 6¢).

For LES with y; =0 (sets A and B), we plot the subgrid kinetic energy fraction,
Koo /(Kres + Kgs), where Koo =u;u;/2 and Ky =T;;/2=K, in figure 7. Near the
channel centre, the LES SGS model behaves in the classical LES view, where it
carries roughly 10 %-20 % of the overall kinetic energy. This, however, is reversed
near the wall, independent of Re, and resolution (compare figures 7a and 7b).

A feature of our wall model is its ability to predict the local Karman constant, ;.
Its p.d.f. in figure 8 shows peak values around 0.38, with a wider distribution for the
cases with yi; =0.45. The notion of variable #"; was also suggested by Nickels (2004),
who found that #"; could also be sensitive to pressure gradients. This is consistent
with the present modelling approach, where all local wall-adjacent cells are subjected
to outer flow forcing with pressure gradients and should therefore have their own
A1, although their average | should agree with experiments or DNS data.

Figure 9 shows that the mean velocity profiles are not very sensitive to a
doubling of the virtual wall location, hy, from hy=0.18 A, to hy=0.36 A,. We
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FIGURE 7. The subgrid kinetic energy fraction K g/(Kes + Ksgs) With (a) coarse resolution
(set A) and (b) fine resolution (set B): &, Re, =2k; 0, Re; =20k; O, Re, =200k; A, Re, =2 M;
V, Re; =20 M.

found some sensitivity when hy, was decreased below 0.1 A,, and this is not
recommended. With {y=ho/A, and A,=L,/N,, §=L_/2 + hy, we have, in inner
variables, hj =2¢Re,/(N, + 2¢). We require that hj >h} =11. This is satisfied
always presently. We note that for Re, =2k, this is not satisfied with N = 96, and
these runs were done only with N =48 for which i ~ 15 with £ =0.18.
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FIGURE 9. Model sensitivity to virtual wall location, hg: upper set (set F), (71)@g =0.38,
shifted up by 10 units for clarity; lower set (set A), (#1)ag =0.37; O, Re, =20k; O, Re, =
200k; A, Re, =2 M; ,log(zt /1) /(A 1) avg + 1.

4.2. Resolved-scale spectra

The one-dimensional power spectra of streamwise velocity fluctuations, E,,, at the
quarter-channel height z/6§=0.5 is shown in figure 10. We adopt the following

convention:
o = [ Btk by = [ Euth) b (41)
0 0

The plots are normalized with the plane-averaged Kolmogorov scales € and v, where
the total dissipation € =¢,; + €45, the resolved dissipation € —2v§,1§,1 and the
subgrid dissipation €y, = fk 2vk?E (k) dk. For reference, K. sgs/ (Krs + K Sgs) < 0.2 at
this wall-normal plane (figure 7a). Also in figure 10 are model spectra (Pope 2000,
figure 6.14) that fit data from nearly two decades (30-1500) of Taylor-scale Reynolds
numbers, as compiled by Saddoughi & Veeravalli (1994). To reproduce the model
spectra of Pope (2000), we use the parameters €, v and the isotropic surrogate for the
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turbulent kinetic energy, 3u? /2, where u2, . =uu + T,,. The envelope produced by
the composite of all the spectra collapses onto the same k—/* line, suggesting that
in all cases, the Kolmogorov scale — and hence the total dissipation — are accurately
predicted by the LES model, independent of Re,. The rapid (= 6 points) drop near
the 2/3-cutoff wavenumber is purely an artefact of the exponential smoothing, (A 6).
The rest of the drop could be attributed to dominant SGS dynamics that overwhelm
the resolved scales in that wavenumber range, resulting in the observed effect of
excess resolved wavenumbers. To test this idea, we need the subgrid extension of the
spectrum representing the dynamics of the SGS model.

4.3. Subgrid-continued spectra

A Dbenefit of the stretched-spiral vortex model for LES is the availability of a
closed-form spectral representation of the local Navier—Stokes solution that can
be used to obtain the subgrid-continued spectra down to Kolmogorov scales. This
was demonstrated for both velocity and scalar spectra by Hill et al. (2006).

Given that the SGS vortices are oriented according to the delta-function distribution
(§2.2), the one-dimensional spectrum tensors derived by Pullin & Saffman (1994,
equations (49)—(51)) for an ensemble of cylindrical vortices reduce to

2 o0 k2 —1/2
O11(k3) = n/ E(k) <k2 - sm%)
|k3/sin 6|

X 1 cos’ @ cos’ ¢ | k* — K + 1 sin’® ¢ K L dk, (4.2a)
k2 sin’ 0 k2 sin6 | sinf

2 o0 k2 —1/2
On(ks) = n/ E(k) (k2 - s1r1;9>
|k3/sin6|

X icoszesin2¢ k* — ks +icosz¢
k? sin® 6 k?

21
N dk»
sin” 6 ] sin 6

(4.2b)
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k2 st sinZ 6 sinf ¢
with E(k) is given by (2.6). Here, the Euler angles 6 and ¢ (the delta-function
peak locations) are defined relative to the (xi, x», x3) coordinate system, which is
not necessarily coincident with the laboratory frame (different from §2.2). The even
function ©;;(k3), no summation over i, is defined such that f_ﬁo Oii(ks) dks = (u;)?
from which it follows that E;;(k3) =2;;(k;). To obtain the subgrid-continued E;;(k,),
we choose k3 to coincide with k,; that is 6 is the angle between the vortex axis
and the x-axis. Given the wavenumber k,, E;;(k,) is found by averaging (4.2a) over
every cell on the xy-plane; E;;(k,) is obtained in a similar manner. We remark that
this calculation requires only numerical information obtained from the LES through
E(k); no additional tuning parameters are required. Also, this calculation is only
performed when subgrid-continued spectra are required; it is not a required part of
the resolved-scale LES simulation.

Figure 11 shows both resolved and subgrid contributions to E,,(k,) and E,,(ky)
for the Re, =20k case with two different grid resolutions. As the resolution is
increased, the resolved spectra extend themselves to higher wavenumbers, following
their subgrid extensions. Note, however, that the subgrid extensions remain unchanged
as the resolution is increased; on this basis, one could claim that the SGS dynamics
have converged. Unlike E,,(k,), E,.(ky) appears not to suffer from excess resolution,
dropping sharply only near the 2/3-cutoff wavenumber. The subgrid part of E,,(k,)
(see figure 11a) continues where the resolved part drops off, reinforcing the idea that
the SGS dynamics effectively take over.

We compare our LES prediction of E,, at various wall distances with the DNS
data of Hoyas & Jiménez (2006) in figure 12. The z/8§ =0.2 plane corresponds to our
fifth off-wall grid point, where K /(K s + Kygs) 0.2 (see figure 7a). At these wall
locations, the composite of the resolved and subgrid components appear to faithfully
capture the main features of the DNS spectra. These features include the spatial
anisotropy of the subgrid extensions, seen in the ordering of the subgrid E,,(k,) and




Large-eddy simulation of turbulent channel flow 301

(a) o o\o.oygo_??

900 © 90

<
-

._.
o
(=}
T
/
§
rd
1y
/
-
l‘ !
v
h
,
e
b
'y
|

° N
. RN
+ -2 | N i
Efy 10 o
o

10-5 104 10-3 102 10! 100

104 T T T T

° T Te-g 22,

102 -

o\s:"\:‘\
* oS
100 o RO -

Efy 102

.,

o ® o o°
.

<

10-8 I I I I
103 104 103 102 10-1 100

k. K

FIGURE 12. Spectra for Re, =2k (case Al) at (a) z/6=0.2, (b) z/§=0.5 and (¢) z/8=1: ¢
and ----, E} (k[); O and —-—, E;,(ky*); open symbols, resolved; solid symbols, subgrid;
lines, DNS (Hoyas & Jiménez 2006).

E,u(ky), and the hump in the resolved E,,(k,) in the range 107 <k <1072, which
becomes less prominent as z/§ increases from 0.2 to 1. In figure 12(a), the subgrid
extension of E,,(k,) is slightly steeper than the DNS result. This may be due to a
mismatch between the near-wall physics, which, perhaps, is exhibiting a k~! range
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(Perry & Chong 1982), and our LES model based on stretched-spiral vortices, which
have an inherent k—>/° inertial range.

We also plot one-dimensional spectra for the spanwise and wall-normal velocity
components at z/8 =0.5 in figure 13. Comparing the spectra for the three velocities at
the same wall-normal location (figures 13a, b and 12b), we see a faithful reproduction
of the velocity anisotropy, as well as the spatial anisotropy, both in the resolved
components and the subgrid extension; in fact, the ordering of the subgrid E,, (k)
and E,,(k,) is switched for the subgrid E,,(k,) and E,,(k,) in 1072 <k, ki < 1071,

5. Conclusions

An LES wall model based on SGS stretched vortices has been developed. Its
salient feature is the implementation of Dirichlet boundary conditions, including a
streamwise slip velocity at a lifted, virtual wall that lies within the overlap region. This
is done using a tailored SGS near-wall model based on the plane filtering and wall-
normal averaging of the streamwise momentum equation combined with an extended
version of the general stretched-vortex SGS model that incorporates the dominant
near-wall physics. When coupled with outer, resolved-scale LES, use of the wall model
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produces satisfactory mean velocity profiles and acceptable second-order turbulence
statistics over a wide range of Re,. This scheme also provides dynamic estimates
of the Karman constant that are consistent with experimental measurements. In the
main body of the channel flow, subgrid-continued spectra agree well with DNS down
to Kolmogorov scales and capture anisotropy effects.

Since the present near-wall model is entirely local, it can readily be applied to
inhomogeneous turbulent flows. While the predictive performance of a wall model in
complex turbulent flows, especially those involving separation, can only be validated
with an a posteriori analysis and further LES, some prior analysis may guide our
expectations of the present model, which we now discuss.

First, we have argued that our approach is not an equilibrium model in the
sense of Piomelli (2008). Presently the local inner-scaling assumption (3.6) is used
in a local sense to reduce only the unsteady term in the plane-filtered, wall-normal
averaged streamwise momentum equation, leading to (3.12). We stress again that in
this reduction, a specific F(z*) is not required. Further, our log-like profile (3.19)
does not use (3.6) but is derived directly from the stretched-vortex subgrid model
combined with the attached eddy hypothesis in a way that couples with the resolved-
scale LES. In fact, the effective and local ‘Karman constant’ (3.18) depends partially
on LES-derived quantities and so is also a mixed inner—outer scale parameter. Thus
the combination of (3.12) and (3.19) can be viewed as containing elements of both
restricted inner scaling and the outer flow via the LES. The overall model is therefore
only partially reliant upon inner scaling. This may be an improvement over TBLE
approaches, where the log law is implied by the damped mixing-length eddy viscosity.
We note that even when this log law is assumed, the TBLE approach improves the
prediction of separated flows relative to equilibrium log-law models (Cabot & Moin
1999).

Second, we can show that (3.12) contains an inherent signature for incipient
separation in the sense that u,(x, y, t) vanishes locally. At each wall-adjacent (x, y)
location, (3.12) can be written in the form (o= 0u/dzlo)

dT]() ~
—=A — 5.1
ar no(1M0 — 10), (5.1)
where
2v - 1 h (duul, duv|, 9p u
Alt) = ——, 1) =—— —— — — 52a,b
) h ul, olt) vuw|h v< ox dy ox |, +8zh (5-24,5)
After using the integrating factor,
t
1(r) = exp (-/ A(S)'ﬁo(S)dS) : (53)
0

(5.1) becomes separable, and its exact solution, written as an integral, is
1 I(1) / " A(s)

= + 1(1) ds, 5.4)

o 0 )16 (
For simplicity now assume constant coefficients 7o(¢) =70(0) and A(z) = A(0); then

1 L A0 1 —tA(O)7

— = e 00— (1 — A0 5.5)

0©  10(0) 0] ) (

so that no(7) ~ 10(0) for ¢t > 1/[A(0)10(0)]. Roughly, this means ny tends towards the
steady state 7 at the rate Any. A separation criterion can now be obtained based
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on (5.4). Without loss of generality, assume that ny(t =0) > 0. Separation, defined by
no =0, would occur at r =1, >0. We know I(t,) >0 from (5.3), and upon assuming
that I(¢,) < oo, we require the integral in (5.4) to be singular for separation. A sufficient
condition is A(t)= O(t —t,;)~! to give a logarithmic singularity. From the definition of
A(t) in (5.2 a), we require that u|, = O(r —t,). When t > 1, u|, changes sign, indicating
that the outer flow has separated and is now reversed.

When the lifted wall penetrates the outer edge of the viscous sublayer, hj <h} =11,
which occurs near separation or in a laminar flow, the logarithmic boundary condition
(3.19) would be replaced with the linear relationship u*|,, =ho*.

Finally, in the interests of minimizing discretization errors, we tested the present
model on a purpose-built high-accuracy research code. However, we expect similar
model performance on general-purpose codes — see Pantano et al. (2008), who
successfully employed a second-order code to run a similar LES SGS model coupled
with a different wall model.

The authors wish to thank Professor J. Jiménez who kindly provided DNS spectra.
This work is partially supported by the NSF under grant CBET 0651754.

Appendix A. Numerical method

The low-storage third-order semi-implicit Runge—Kutta method of Spalart, Moser &
Rogers (1991) is used for temporal discretization. The implicit treatment of the viscous
term allows large time steps to be taken; in the simulations, the CFL number

ul [v]  |w]
Aymax | —, —, — Al

’ X(m-% A (A0
was set to unity. The low-storage property simplifies the time step advancement into
three sequential substeps, n =0, 1, 2, of the same form:

iz(n+1) _ 70 aﬁ(n+l) 1 1
e = =+ ) Y 6 H ) £, L+ 8L (A2a)
t i
8~(.n+1)
i (A 2b)
Bx,-
1 /Ouu; ou; oT;; 0u;
H =—3 — uj— ' i» Li= = A2
2 ( an + u‘l 8Xj> * 8)6.]* * f Y axf ( C)

For an arbitrary reference time ¢, 553) =u,;(fo + A,). The value of the constants a,, B,
¥» and ¢, are given by Spalart et al. (1991). The discrete pressure p”* 1 is formally a
Lagrange multiplier that enforces (A 2b), including at the boundary.

The governing equations are solved in an L, x L, x L, box with periodic boundary
conditions applied in both the x and y directions. Applying the Fourier spectral
method for both these directions results in N, x N, sets of one-dimensional complex
Helmholtz equations in the z direction for each mode (k,, k,), where

k, =2n/L,(—=N,/2,...,—1,0,1,..., N, /2 —1),
ky, =2n/L,(—N,/2,...,—1,0,1,...,N,/2 —1).
In practice, only half of the N, x N, sets of complex equations (or N, X N, sets of

real equations, separately counting real and imaginary parts) are solved due to the
symmetry of the Fourier coefficients.
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An explicit finite-difference scheme with fourth-order global accuracy (third-
order boundary, sixth-order interior) is used to approximate the z derivative on
N, +1 uniformly spaced nodes, located at zz =L, (—1/2+k/N;), k=0,1,...,N,.
When coupled with a certain diagonal norm, the finite-difference approximation
satisfies the summation-by-parts (SBP) property (Carpenter, Gottlieb & Abarbanel
1994; Strand 1994; Mattsson & Nordstrom 2004). Although stability in the sense
described in those papers is not preserved because Dirichlet boundary conditions
are applied directly (injection method), our experience indicates that stability is not
an issue, at least presently, where the diffusion operator is advanced implicitly. In
explicit schemes, a seven-point stencil is required to achieve sixth-order accuracy,
but, following Hill & Pullin (2004), we use two additional points to minimize
the Ghosal truncation error (Ghosal 1996). The Ghosal truncation error pertains
to errors resulting from the application of spatial discretization schemes to the
Navier—Stokes equations. Unsurprisingly, in reducing the Ghosal truncation error, the
high-wavenumber performance of the finite-difference scheme is also simultaneously
improved (Hill & Pullin 2004). Such a scheme, called a tuned centred-difference (TCD)
method by Hill & Pullin (2004), is also combined with the SBP scheme in Pantano
et al. (2007). Complete details of the N, + 1 x N, + 1 finite-difference matrix D, are
provided in Appendix B.

Spatially discretizing (A 2), we obtain for each mode (k,, k,) and node z;

(D2 —2*)u =ik l'p+ Ry + o1,

(D2 = 22)0 = iky{'p + Ry + 03, (A 3a)
(Dz2 - 12){[) = D.¢'p + R3 + 03,
ikydi + ik, B + D = 0, (A 3b)

where 22 =k} +k;+1/(BvA,) and ¢'=(y +¢)/(Bv). The spatial discretization of
(u1, uz, uz, p)"(x, y, z) is denoted (u, v, W, p)(ky, ky, k). For clarity, we have dropped
the superscript and subscript n from (A 2a); R; are known terms, obtained by simple
rearrangement; o; are incurred penalty terms for directly imposing Dirichlet boundary

conditions on the velocity at k=0 and k = N, (or equivalently, at z= + L,/2),

@, 9, W)k, ky, 0) = (&1, &, & ks, ky),}

SO ~t ot~ (Ad)
(l/l, v, w)(kx, kyy Nz) = (gl+7 g2+’ g3+)(kx7 k\)

In other words, because we choose to satisfy (A 4), (A 3) written without o; cannot
be satisfied at k=0 and k= N,. Although we call o; a penalty term, it should not
be confused with the simultaneous-approximation-term (SAT) technique (Carpenter
et al. 1994), where o; is explicitly specified. Here, o; must be determined as part of the
solution procedure. Note, however, that the divergence constraint, (A 3b), is satisfied
everywhere, even at the boundaries, k=0 and k= N..

The discrete pressure Poisson equation is obtained by applying the discrete
divergence to the momentum equations:

(D? — [k} +K3])¢'P = —R, — (ik,01 + iky02 + D.03), (A5)

where R, =ik, R; +iky,R,+ D.Rs3. In general, D.o3 is non-zero in the interior of the
domain, k=1,2,..., N, — 1. That is g;, appearing only at the boundaries of (A 3a)
carry over as additional interior source terms to (A 5). Careful accounting of the o;
terms is key to ensuring discrete mass conservation up to machine precision. Unlike
in well-resolved simulations such as DNS in which o; is small and can thus be safely
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ignored, o; in LES is large and if ignored will be a source of non-zero velocity
divergence that leads to numerical instability (Canuto et al. 1987). The method for
solving this coupled problem in the discrete framework is the Kleiser—Schumann
influence-matrix method, detailed by Canuto et al. (1987). Although they presented
it for the Chebyshev-tau and spectral collocation discretizations with homogeneous
boundary conditions, the method is quite general, and we extend its usage here for
finite differences with non-homogeneous boundary conditions.

As written, the nonlinear products in (A 2c) are computed in skew-symmetric
form in physical space. Then, H;, which includes the nonlinear products and the
LES contributions, is transformed to wavenumber space, where a p;th-order Fourier
exponential filter (Gottlieb & Shu 1997; Hou & Li 2007) of the form

o(§) =exp (—aig") (A6)

is applied in the periodic directions, & = |k,|/(/A,), |ky|/(T/A,); p1 =36; a; is chosen
so that o(2/3) =1/2. The high-order filter, with flat response at resolved wavenumbers
and sharp but smooth drop at the cutoff wavenumber, mimics the 2/3-dealiasing rule.
In an LES employing a local physical-space SGS model, the filter’s smooth cutoff
minimizes Gibbs oscillations that, posing as steep local gradients, would artificially
activate the SGS model.

The set of ODEs, (3.12) for the wall shear stress, wo(x, y,t)=vno(x, y,t), are
advanced using the same third-order Runge—Kutta scheme as the main part of the
flow simulation. The overall computing overhead for the implementation of the
stretched-vortex SGS model is less than 10 % of the overall computing time. Because
the numerical solution of the wall ODE set occurs only in boundary cells, this
constitutes a small part of the SGS-related computing effort.

Appendix B. SBP TCD derivative matrix

We provide details of the fourth-order globally accurate explicit finite-difference
N,+1x N,+1 matrix, D,. This matrix operates on any N,+1 vector, u, say,
whose elements u; represent nodal discretizations of the continuous function u(z)
at uniformly spaced nodes, zz = — L,/2+ kA, A,=L,/N, k=0,1,..., N,, such that
u(zx) =ui. SBP operators (Strand 1994 ; Mattsson & Nordstrom 2004) are constructed
from the following decomposition:

1
D, = A—H_lQ, Q0+ 0" =B, B=diag(—1,0,...,0,1); (Bla,b,c)
Z

H=H">0 and is used to define an inner product, (u, u)y =u’” Hu, which, in turn,
defines a norm on u, given by |[ul|%, = (u, u)y. Although many possible choices for
such H exist, we will only consider the diagonal norm,

H = diag(ho, hy, ..., hy,), (B2)

which restricts the order of accuracy of the boundary scheme to at most half the order
of accuracy of the interior scheme (Strand 1994). Although not pursued presently,
an SBP scheme with diagonal norm can be easily generalized to apply on arbitrarily
mapped grids by absorbing the scaling factors into H. Presently, a third-order scheme
coupled with a sixth-order interior scheme, equivalent to a fourth-order global scheme,
is chosen. The boundary scheme covers the finite-difference approximation for the
first and last six points, k=0, 1,...5, N, —5, N,—4, ..., N,, while the interior scheme
covers the rest, k=6,7,..., N, — 6.
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The sixth-order TCD (Hill & Pullin 2004), which has a wider nine-point stencil, is
used as the interior scheme. The extra degree of freedom is used to improve spectral
resolution by reducing truncation errors inherent in the Navier—Stokes equations. Any
nine-point sixth-order centred difference approximation for the derivative is given by

4
1
D,uy = 5 j;dj(ukﬂ — i), (B3)

where dy=0; d; =3/4 —14d,; d= — 3/20+ 14d,; ds =1/60 — 6d,4; and d, is the free
parameter. Setting d, =0 recovers the standard sixth-order explicit scheme; setting
dy=—1/280 recovers the standard eighth-order explicit scheme; d, is determined by
minimizing the Ghosal truncation error (Ghosal 1996), a procedure detailed by Hill &
Pullin (2004). Here, we only give the final result: d, =—0.0166.

Comparing (B la), (B2) and (B 3), we identify the TCD scheme in the context of
the SBP operator as

dj i, 0<j—k<4,
hk=1, ij= _dk—j» 0<k—]<4, (B4Cl,b)
0, otherwise,

for k=6,7,..., N, — 6.
To determine the boundary scheme, write (Bla) and (B2) explicitly for
k=0,1,...,5:

10 5 10
hi(A) (Do) = Z Qyjuj = Z Qpjuj + Z Qyju. (B5)
j=0 =0 j=6
The second term on the right-hand side is known from using (B 15) and (4):

O =—0Qjx =—(—dj—) =dj— (B6)

for k=0,1,...,5, j=6,7,...,10, 0 < j — k <4. Substituting this in (B 5) gives

5 k+4
hi(A)(Dou)e = Quuy + Y dj_qu;. (B7)
j=0 j=6

The remaining unknowns to be solved are the 6 x 6 block, Qy; (k, j=0,1,...,5) and
the six-element vector i, (k=0,1,...,5). For each k, match the coefficients from the
series expansion of (B7) up to (A,)? and apply (B1b) to determine the remaining
unknowns up to a another free parameter, Qus, say, different from d; (see Strand
1994). We choose Q45 by minimizing the so-called average boundary truncation error
(Diener et al. 2007), giving Q45 = (17171 — 329670d,)/24300.
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